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SYMBOLS

C viscous lamping (onstat belween m, v s(aled velocity /l(a for one-degree-of-
anl m I fre(ed)(om s-5stefl

F, forcing functiol oil m, VN scaled velocity at t = t. for one-degree-
of'-freedom-system

flo nonlinear spring force between mass a.nd
fotdation; kx + Pz3  1 scaled velocity i I/aie

fn, nonlinear spring fOrce bdtween m, muId (v,) scaled vehity at s = .'
MIn; k.x 2 + P.ix|

x relative (isplacement between mass and

mean value of the modified nonlitiear foundation for one-degree-of-freedom

spring force for t , < < t'. I system

h finite time incremen; At z, relative displacement between mass and

foundation at t = t. for one-degree-of-

k, spring constant between m, and m, freedom system

Me ith mass x, relative displacement between m, and

P IVTi-a (x,). relative displacement between m, and
ni-I at t = ta

y absolute displacement of mass in one-

s. F. I - F. degree-of-freedom system

y. absolute displacement of mass at t = t.
.S., S . - S,. F=.. - 2F. + F. for one-degree-of-freedom system

S. in.. _ 4 yi absolute displacement of m,

(ye). absolute displacement of m, at t = t.sI, * s.-s. ,=z..,-2.+Z.,

z absolute foundation displacement

independent time variabk-
a, el2m,wg

I scaled velocity i/l for one-degreed-o- P- coefficient of nonlinear term of spring
freedon system

u, scaled velocity at I = in for one-degree-
of-freedom system , delta term for the ith equation of iniion

uI s-aled velocity ii.lw 0 "k

(U-). s akd vekoity at t = t o klm
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'.altle. by .1 %l.Iighl lilic. of by~ .1 p .uletula. This% iltlw% fle tDcihiitirl inegral I'. x* soliLoImi lot Ow noll.

I ate4 (if N iinw kl requalwis1. A %e .iig lAw I% tI esiited Ahth in ittniairs tniw-ii dtaming fiom dii w
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%v~leml mid11 a iwii~legit-iu air lteJeiII beICI .m, S i ft-h l ikIiCi li at tigia.tili r(tiationI% mid( tite

INTRODUCTION tlifferences and to use these equations as anl ap-

This report deals primarily with approximate fpflxinilatiohl to the differenltial equations. Tlhese

numerical solutions of a single or a set of non- are g(xxI general purpose~4 techniques. However,
.ill0itllotiOs SeCOndl-ordler ordinal y nonlinear dif~ - ify tendl to be rouitine techniques which remove

lerential equations. While the ( las% of' prohlenms lite analyst f ront a clear understanding of the

untler consideration lie in the field of* structural mnerinl wh i h lillefireltial equations were

dynamics, the propoNsedl solutions are applicable Solved.

to many other phlysis atid enigineering fields. ,Ihle numelirical miethod presented uses onily
TIhe mathemat ical tols of ordinary nio nlinear dlif- those mat henmatical to ols which are familiar to

lereuitial equations are particularly useful when most engineering graduates andl are applied di-
dealing with autonomtous solutions or with ill)- redly to the class of (lifferential equatiotns under

pro~ximaite steady-state solutions of ihese prob- situdy. It should not he construed that this is at
l-ms. However, they requoire conlsidlerable ingeti- (ride iteclni(tue and that the solutions will be

ity andl inisight to apply and are not suited fo r greatly in error or- will have inherent instahilities

the study of ltransient behavior. Ai atpt is of large magni tude. TEhe examples in this reponrt

inade inl this repoirt to present an easily utnder- shlow the ojqlosite ito be true.

stoEil, yet jilowerlill anml pretise, tel nique which To those read~ers whol are already familiar Withi

will allow Imost enigineers to (oit Will i teK 11al Refs. I and 2. this ref~mrt is at direct applicatiotn

silnt reslMioni5(o f nonlinear systetms. of lit-e prinicip~les exp~lained therein. For those

TW wopirvmotis NRI . Rellerts (1.2) have (dealt pit-rsqons who have not readl thenm. however, it is

Withi this prollemm. and this rqelrt jnursties the notedl that this rej-iort is compfletely self-contained

saink genmeral apjiroaIt If. Most approximate fill and( these references are not required reading.

mneri al tchlniquers fail to attack directly thle in-
liniear diflerreit ial equltit ms ill their solihtions. BACKGROUND THEORY
Rat her, they initotiune Maclauim or aylor series
expanlsionis of lite Iunlions its Ili the initioli of' The Linear Problem
Picard (3). 'I'lir othet general approa h is to) re- It will he hfeelicial to) review at numerical inte-

pae dliflemential equoations Iv ewItills of foiit grationl Imethodfi (1) Which is used to solIve linear

NNl. I'r.birm 11110-2411, Pliupi WW 44 he% I, Ali(1W viwit w igl-ere-o-redoi probletms before pro-
on werp w owi, coil m wrlilii tredinig tam the nonlinear ones. Cotnsider lte un-

Mjmov I. ilet milmiotleoi If" revolve-ii. 11012 iaillwel litiear omscillato~r shoiori in Fig. I subjecut



2 U.N. NAVAL RESEARCH LABORATORY

into equal segments of time,* and represented in
solmle ap)roximate ianner for each increment, a
step by step approximate solution follows. It is

k note(l that Eq. (4) is true for all times during the
reslxijse of the os(illator. For example. suppose
y = y. and v = v, at I = ti. Now the time can be

hg. I- li,wi ,,.ihal,,, elefined arbitrarily to start at zero for the next
increment with y, and v, being the initial condi-
lions. The l)uhamel integrals are solved for this
next step, y2 and v2 are found, and a repetition
of' the process defines the next pair of points.
The process is self-Iperpetuating.

F(t) The problem in this direct attack upon the dif-
lerential equation of' motion has resolved itself
into the solution of these integrals for a short

to ai applied force F(t). Let y be the displace- time increment. Since the forcing function may
ilent of the oscillator so that the diflerential be known only as a graphical function, as a dis-
equation of Iliotion is tontinuous function, or as a complicated analytic

function, some methods of describing it over the

MY + ky =FM) imnmediate range of' integration is now discussed.

where the dots denote differentiation with respect Approximate Methods of
to time. If w2 = k/r. Eq. (1) becomes R.pr..ng Fucios

+ taiY = F ' (2) Three methods are presented for the approxi-
m

mate representation of a function over finite in-
The general solution of this equation is crements of time At = h. Suppose a portion of an

y - yr + ), (3) arbitrary function F(t) is dividrd into equal seg-
ments of time.* Figure 2 shows the rectangular

where y, is the complementar) .-dution and y, step representation consisting of horizontal lines
is the particular solution. This property of linear drawn through the mean value of the function
equations will be shown to have some value in the over each increment h. Appendix A reviews two
approximate solution of nonlinear equations. (onmnon procedures for obtaining graphically the

For the case under study the comnlplementary mean value of a function for a given increment.
solution is well known and the lrtKh'lar solu- The equation of the function during each incre-
is a I)uhamel integral (4). If v = */0w, the general ment is
solution of Eq. (2) is

y = yo (os Wt + Vo Sin wt F(t) = F, = constant, t1o < t < to+l1 (5)

S F(T) sin w(t - T) dT (4a) where F. is the mean value of F during the in-
m mJ0 crement.

The second method represents the curve by a

and its scaled derivative v is straight line through the end Ixints across each
increment as shown in Fig. 3. The equation of the

V = -yo sin wL + V0 cos wt function from to to too is

IV F(t) =F. + so, (6)
+ F(T) os w(t - T) dT (4b)

where So = F.., - Fi, and time begins at to.

where yo and ye are the initial values at t = to = 0.
tl~indung F ug0,, equal we'gmnla gut Imnu' r .an unne t,riar5 bui gim.

Usually the integrals of Iq. (4) cannot be eval- nmrne ,rvv. nom sa, ,r it mki u.kii lA ra'wr And .--wni,,er p.,-
Oaed for an arbitrary curve ;)f F. If F is divided gramnung Iisn .. ,hrwnw
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Fn+1

-I

Fn 
Fn

t -t

tn-I tn tn+i tn-I tn tn +l

FIg. 2 - Reprrw mnlaiol, of .a 11u t ioll by ,i r angillar %tc). Fig. 3 - R pr"mC.lationl o) a |Ul *t03* I)m I sra Iht fiines

The third methoi Ef ap)proximatilg a Iunctioln F(t ) = k'.

a(ross an incremhent is to pass a paraboila through I-(h' )'F. , + [(h')2 - h2IF. + h'F..,
three sucessive mints. For example., Fig. 3 shows + tAh' (h + h') t
three successive Ioiln1s on the (urve. namely.
F. ,, k., and F., i. The e(quation oI the parabola
from t. t) s.., passing through these three lmints + [h'F. , - (h + h')F. + F.a1(2 00)
on the curve is [ hh'(h + h')

Fit) = k" + s, t + y (L2 (7a) Solmon Eiraao"s for the

2 At" _hUndameped LUer Oscilhator

or If the parabolic representation of a function
+ ., + It given by Eq. (7b) is substituted for F in Eqs. (4).

F(k) . + S. + ( (7b) and the integrations performed and evaluated atA 2 h t = A. there results

where y.., = y. cos 9 + v. sin 0

Si S.., - 2 - - 2F.. + F. (8) +LM"I I -si

S' . .- S. ,=F..,-2F.+F. (9) +-' -- sin 2(1cos) (la)

and time again begins at t.. Note that S2 is nd the v.., = -y. sin 0 + v, cus 9
l uare( ol S. Eqjuation (7a) is used io represent the F. S. ( I - cos 9)

( urve" during tle first increment of time, that is, + - sin 9 +k 0
lot a = 0. Eqfuation (7b) is the Cxu)VMi1o.ed for
Ohe ,,,,aining segments of the trvc. Eqtation U (, + os + -b

(7a) is derived sl'xcially to avoid the nonexistent + - + "--____ (I lsn)
if in illS, , (that is. F .) if l.41 . (7h) were used Ir 2k 0 92

i. e st increment.
Not Ile 4 as% where two su,( 'sive int reents are where 0 = &A. It is noted that for constant incre-

liol equal, say At between f'. I and f. a.nd h' ments A, the trigonometric coefficients are caku-
e.tween f'. .nd F., ,. Eq. (71) is adjusted to read lated just once for the entire solution.
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Equations (11) are used for the straight line The form of the general solution for Eq. (16)
representation of F by setting SO equal to zero, is given by Eq. (3) which, for this case, consists
and for the rectangular step representation by of a combination of exponential, trigonometric,
setting both S and SO equal to zero. The equa- and hyperbolic functions, and the solutions may
tions for the latter case are be found in Appendix B. The forcing function

is approximated as previously discussed and the
y,+ ya cos 0 + v., sin 0 solution carried on precisely as in the undamped

case. For example, with a = I and the average or

(I - cos s) (12a) mean value of the force used, the equations arek

y.,a = y.(I + O)e-s + v.8e- O

V,,I-y. sin 0+v. cos 0 + sin0. (12b)

+ [- (I + 0)e-O]
Recall that T. is the mean value of the function

during each increment. For functions such as +.
F, which are explicit functions of time, it is recom- v,,I = -y.0e - O + v.( 1 - )e- k e - .

mended to find the average value of F during the
time increment instead of employing the graphical
techniques outlined in Appendix A. The average Commenta
value of the function represented by a straight
line is The solution of the linear problem leads to

several interesting observations.

Fi + F._ I. A direct attack on the differential equation
F_ + (13) is made.

2 2. The coefficients of the variable terms in the

while the average value for a parabolic represen- numerical equations become cbnstants through-
tation is out the solution when equal time intervals are

employed.
(-F.I + 8F. + SF.. 1 ). (14) 3. The solution makes use of the natural expan-

12 sion functions for the differential equations. That
- is. they are of the form of trigonometric, hyper-

Either Eq. (13) or (14) is then substituted for F. holic, and exponential functions as they would be
in Eqs. (12) and the numerical integral equations in an analytical case.
solved in a step by step fashion.

Soludos Asios for theNONUNEAR PROBLEM

Viscously Damped Linear Oscillator
Numerical Solito.

The method of solutnion fIr the undamped case
is also applicabk to the viscously damped sys- Suppose an ordinary second-order differential
ten. The equation of molion of an oscillator with equation is reducible to the form
linear damping is

+ H(y, ,= 0 (17)
mj + cj + ky = F(I). (15)

where H(y, I, t) may he a very complicated func-
tion. Since the function H contains a forcing func-
ion F, Eq. (17) becomes

j + 2aj + w2y = __) (16)
m F

where - < a< OC.and qa> O. Y +G=- (1
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where numerical integration equations for y and v are
obtained. Consider a sim)le oscillator with a cubic

H = G - F hardening spring. The equation of motion is
m mj + ky + Py3 = Fit)

0et Eq. (18) be rewritten or
or

+ 2aju + (02y = _E + 1y = F(t) _ 2,

-(G - 2aajy - ray] where

and let = y3.

k
0028 = G - 2a§j' - W0-y

so that Use Eq. (7)) for the cubic term, obtaining
F

j=+-2awj- +W2y w28. (19a) 8 [+aj+ m 8 = kIYoe+(Y".,-Yo)

If 8 were zero for all time, the equation would + 0 13
be linear, and the solution has already been pre- + - , )' h) (21)
sented. For convenience let the damping term 2 I -2 • 21
a be tero in Eq. (19a). Then,

F Expand Fq. (21). substitute it into Eqs. (20) for
+ Wy =- - (A)28. (11h) 8, and integrate each term over the increment.

m If the forcing function were also approximated

The solution of this equation is similar to Eqs. by the )arabolic representation, the resulting
(4); that is, numerical integration equations are of the form

of Eqs. (II) with the additional terms y. - , y..

y = ye Cos & + vo sin 0 + mIW f' F(T) and y.., that is,

I y.., =ga(F, , F, F ., , yn-, ya. Y..+,, v.,h)

sin (t - T)dT- oj I S(T) sin w(t - T)dT (22a)

(20a)

v v., = g 2 (F .-, F., Fa,, ym-i, y., y. ,, v,h).

oy +t0 F(T) (22b)

Everything is known on the right-hand side of
(0s oj(t - T)dT - w 8 8(T) (os w(t - T)dT. Eqs. (22) except y,+.. As a first trial this value may

(20b) be assumed° equal to y.. Substitute this into the
right-hand side of Eq. (22a). to find y, +. Use this

The solution of the linear problem for a given value for y.., in the right-hand side of Eq. (22a)
arbitrary curve of F requires that F be partitioned to find a second value of y. + 1. Repeat this itera-
into finite increments of time and be approxi- tion process until the succeeding values of y.,,
mated over each increment by one of several converge. Use the final value of y., in Eq. (22b)
representations. The same approach, using the to find v,..
same increment h, is proposed to handle the inte- This method of solution (ould al.%) he used if
grals in Eqs. (20) containing the nonlinear terms instead of the parabolic repre.sentation the straight
in 8. line representation ap)rximated the nonlinear

For example, each term in 8 might be approxi- term. liowever, in either case a great deal of time
mated by the parabolic representation so that and effort is required if the analyst uses a desk
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calculator. Of course, the numerical equations ously mentioned. Of course, if 6 contains the
could be programmed for an electronic computer. scaled velxity, the same approach is used to find
Everything which follows from this point is di- vi.
retted toward desk calculator computations. In the case of the parabolic averaging meth-

The recommended method of solution with a od, Eq. (25) shows the rear point y.- 1, which must
desk calculator is to use the mean value or average be known before iterating to find y.. 1. At the
value of the variables in the &term during a given start of a problem where n = 0, y-, does not exist.
finite increment. If this assumption is also ex- It is suggested that the straight line average be
tended to the forcing function, Eqs. (20) are inte- used for the first increment to establish yi. If
grated to give greater accuracy is desired, use the linear averag-

ing method for half' an increment, that is, for
yR, = y. cos 9 + v, sin 9 h/2. Having established y,j in this manner, the

parabolic averaging method is now used for
F+ another half increment to find yl. The full in-

+--k(!- cos 9)- 8.(1- cos 9) (23a) crement might then be used from this point
throughout the remainder of the solution.

v., =-ya sin 0 + v. cos 0
Graphical Form of Nonlinear Components

+ sin - 5, sin 9. (23b1 Quite frequently the nonlinear characteristic

of a material in a system is determined from lab-
For the oscillator with the cubic hardening spring, oratory experiments and is plotted as force ver-
the straight line averaging methol yields sus displacement or vekwity. It is sometimes pos-

sible to find an analytical expression for such a
a. (y. + y.+,), (24) curve. In the event this is not readily attainable,

8 a graphical technique for finding the mean value
while the parabolic averaging method yields of a function over an increment is used (see Ap-

pendix A).
, = - (-y. I + 8y. + 5y.,, )3. (25) For purposes of illustration consider Fig. 4a,

1728 which shows the spring force for positive dis-
Once again y.,, is the unknown on the right- placements only. A line tangent to the curve at

hand side of Eqs. (23) and the iteration process the origin is drawn and is labeled the k-line. Fig-
is used for each step of the solution as previously ure 41) represents the spring force minus the
described, k-line as a function of displacement. This is the

curve from which the mean value off is deter-
mined. Suppose an oscillator contains such a

The First Increment spring. Equations (23) become

Special treatment is necessary for the applica-
tion of the numerical integration equations at the y,, = y. cos 9 + v. sin 0
start of the solution. At the beginning of a problem
the initial conditions are always known so that + I - c 9)-
ye and v, are established. Having selected a time +k ( ! - c)s 9) (26a)

increment h, the first step of the solution depends
upon the type of averaging method to be used for v.a, = -y. sin 9 + v. cos 9
the nonlinear terms. In the case of the straight
line averaging method, the first trial value for s - s
ye might be assumed; y, might be set equal to +ksin k sin 9 (26b)
yt, or a Maclaurin series might be used to approxi-
mate y,. In any event, the first trial value of y, is where P. is the mean value of the forcing function
substituted into the right-hand side of the nu- and f. is the mean value of the curve shown in Fig.
merical integration equation to find a new value 4b. At step n, y. and v. are known, F. is known
of y,. The iteration procedure follows as previ- from the input curve, f. depends upon y. and the
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piecewise linear solution of the system by reduc-
ing the magnitude of the adjusted forces f. This
means that a corresponding number of* diff'eren-

tial equations must be written lot each region of
0the curve where a k-line is drawn. Proper initial

- conditions and (a's must be determined for each0
numerical integration equation. An example

( might be a material whose f'orce-displacement
zO curve follows closely an ideal elastic-plastic re-
E . * lationship.

CfO

Forcing Functions

Foundation motion of structures is an important
type of forcing function in the field of structural

DISPLACEMENT dynamics. Such motion may be described as foun-
dation acceleration, velkity, or displacement. In

(a) Force displacement curve the case of foundation acceleration the differen-
tial equation of motion for a nonlinear oscillator
with a cubic hardening spring is

W
z

S+0 =X y"X3  (27)

where x is the relative displacement between the
CO mass and the foundation and i is the foundation
z acceleration. This equation is similar to Eq. (2),
2with x replacing y and -" replacing Flr. The
W )aralblic averaging method is recommended for
0¢ systems with a known curve for i This average

for " is the same as Eq. (14) provided the F terms
are replaced by Y terms. Equations (i) may be

z also used provided the following changes are
Fr imade:C. DISPLACEMENT

(b) Adjusted for(e displat-ement (urve -mzN T -- Z, T S

Fig. 4 - %pring fore e. of a nonlinear .pring. The k-Iine is tangent S1 * S11 I
to the, tirve at the origil. k - - j, y V = un-

When the foundation velkity is the prescribed
input, an 'interesting relationship is found for

unknown yn,. As a first trial for finding y+,, the parabolic average of i to be used in the nu-
find f for y. and use this for f.. Substitute into inerical solution of Eq. (27). Consider the para-
Eq. (26a) to find a first trial of y.+. Now find bolic representation for foundation veloity and
f. between y, and y., from Fig. 4b and substitute differentiate to find f'oundation acceleration:
this into Eq. (26a) to obtain a new value of y5 .
Repeat the process itil succeeding values of*
y.,, converge. i= n+ S -+ '1

For Certain cirve shalws it might hx- advan- 2 h

tage(',us to daaw two or tore k-lines for certain
IMortions of ia given curve. These ,-lines would " -+'- - -

provide a solutlion which follows tlorte closely a h h2 2h
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TIhe average acceleration dhiring thle inirnierit is Fo1 thV SiX i llt n( il of101 1 tile inmerical ine-
gia*l soliliini, it new ititteitetit 8' = wA, ' must

A ~~i t-pla( 0 = coh iii it'( SoILhni equai~tions. Equa-
60411 (10I) mutst be tosedl if the input is being ap-

hhpi (xiiatetl h%. the paraboilic repiresentation. In
So4 doing, the( solution is found at step 6 for. x~l

This is thle app~roixima~te repriesenitationi for thle arnd U6, where x,; is I he relative dlisplacemenit be-
foundation acceleration according to4 Ihe theorem wen thle mass of' tile oscillato4r and the founda-
of* the mieani (41differential calculus. lion and u,, is the (irresptondling scaled relative

11 thle founitdation (lisplacemnent is thle prescribed velocity. A[ this ponint the step change in foun-
inp1 ut. t he dfifferenitial equhatioin of' motion for thle dation velocity (scaled) must be adlded to) u6 to
ij(411nhear oscillator shouild be (if the form give us' With zo and us' as the initial conditions

for- step 7 of* the solution, and using & iii the solu-
y,+ Wliy, = (0Z - y2(y, - Z )3 (28) liont equations. the input curve should be repre-

settled by tile straight line method between points
whiere Y, is thle absolute displacement of the mass. 6 and 7 insteadI of the paraboilic method due ito the
Fhit parabolNlic average representation for z is disdotitinuits. at point 6. This comrpletes the solu-
foutnd for- ach increment fromi thle givetn curve. tion to step 7. The parabolic repiresentation may

he used fromt this ponint to thle end of' the input

Step Changes in Input

[he niumerical initegration equiationts are jpar- CONVERGENCE OF THE
ticuilarly appilicable to proiblemls in which step ITERATION METHOD
changes ocur in thle input of' the system. The
Onilyi estrictioti in the solution is to require that One may wotnder ifan assumed variable could
at gi~en iticretnent terminate where the step change not proiduce a diverging solution when substi-
O(400 uts. Let the curve shown ill Fig. 5 be a foult- tilted into the 8 term onl the right-hand side of
olationt velocity (if a rionlitiear oscillator, and stup- tile numerical equations for a given increment.
pos the inicrement h is selected for- the solutioni. Scarborough (31b) has dliscussed the sufficient
A.fter tile fifth step of' the solution, a new incre- conditionis for convergence of one and two nu-
mlent A' is utsedf for thle sixth nt rement in order nierical equations when thle iteration process is
to arrive atl the time when the step) change in the applied. Ali extensioni of' thle procedure follows
found~ationt velotiy ocuors. The %iue inicremenit for a set (if N numerical eqluations.
h is t lien used throughout thle ieniaitioer of' the C onisider the set of equations
s4ltitiolii.

II= Bi f . C2, .. ,EAJ 1, 2, ... , N (29)

z Z Z5 26where B, is a set of' known fnctions in terms of
Z the Ed's. T'he set of' equations is satisfied by the

exact values of' the set oif rotots ti. As a first ap,-
liroximationt to find a set of'roots, trv 46. Hence,
Eq. (29) ges

16 =8s ,46,*. (30)

Substract E.0. (30) from (29) and apply the theorem
oif thle mean value for a function of N variables.

At h Tiis gives

Z) (e)- ).1

1-1g. 5~ - sorp ( hligf ill tn11mn(dlkhiw wckl(ily
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che as desired 1y repeating the iteration process a
suflicient ntumber of times. This means that the

- errors It, - eb"I (a be made as small as desired.

df/(,[O'i + *(e, - ((0), .. ,(, + *(l _ ,E) ] Ihereifr, the iteration process converges when
t , the N coniditions

0 4 , I. jU .,1 + I, i.,I + ... + I B,.,I < I

Add each equation of the set of equations as ex-
pressed in Eq. (31) and consider only the absolute
%allies. Thus, H,.,'I + jB2.JI + ... + IBv.'l < 1 (36)

. - ,X are satisfied for all points in the neighborhood of
I I i-I j-I

(onsider Eqs. (23). which pertain to an incre-
Let the maximum value of the terns {IB.I.1 + ment of time h for a single-degree-of-freedom
+ IB,., ). .... {IB.., + ... + I/B.s.A be a proper system. All terms (in the right-hand side of the

fraction 0 for all points in the region (t O, ,) equations are constants except &,. Suppose &
Then Eq. (32) becomes is a funttion of displacement y and scaled ve-lociti u. Equations (23) are of the form of Eq.

(29) where
I,- e'I ' * V ,- f°1. (33)

-= YN.I, f2 = UN,

Uhis relation holds for the first approximation. B Y. (s 9 + V. sill 0

For succeeding ap)roximations, similar relations
are obtained. That is. + T ( I 9) -Co( i - cos 0)

IN,- ,I - * X - 81 = -. Sill 0 + v. Cos 9
I-l i-i

+Lsin 8- sin 9.

According to Eq. (36) the iteration process on the
N - e , e - E; . 1 4) &'s converge in the nth step of the solution pro-

, E ., I vided that

Multiply together all these inequalities as ex- c - (os 9) - + <sin 9 < I
pressed in Eqs. (33) and (34) and divide through I + i aI
by the Common factors ( cos 9) + sin 9..-_- M < I

II al" 1 1 51 1
1 le - 4{11, 1 If', - 4191 .... Y1,-ell-"Xk - '., .. , in the neighborhood of [y R, + t'+,.

s41 that,

A SCALING LAW

I, - 611 l , I,,- l)1 ( (,,Osider the equation of motion for a single-
l-I lt-I

degree-of-freedom system:
Since # is a proper function, the right-hand

member of this inequality may be taken is small y + 2ato + w2y = -0'8 (37)
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?W

23~ 10

,00028 0

TIME I ISEC)

(a) Strini (b) Foundaion ininl

- ANALOG COMPUTER CURVE
0 RESULTS FROM NUMERICAL METHOD

10

S0 0028 6 OO 0004 0112

-TIME I ISEC)

It) R4sIRinns it %% I oJ )lmled irom ihe nuth erfli r.uethc and

1141 n l l anloJ4g ( IpmIIJ etl

Fg. 6i Iop.t And numneri Ial luhaion .I a nilmnc'ar %rigle-degre-ol-Ilreedomn
5%%I te with vivo(os dlamping

where 8 = 8(y, t, I). Substittle tihe triansforttlliOl = A cos pt h + A ---- 
h

sph
y = A 4 . (38) - (3)- R ra ''" +'" ' ( I - cos ph) (40a)

into Eq. (37). This gives , ,s pA6R si ph + AR"4. -- -,.sitp'+A os ph

+ p2A = -W 2 A e " (39) p p

- AR rn(IRI
' "

)/
# sin ph. (40b)

where p2 = ta,(I - as) and A = A(A, A, t).
Fqualion (39) cim be solved griaj)hially (2) or

immerkially and, osing the transformation of' EXAMPLES
Eq. (38), the resiponse of Ihe origial system is Example I
follld. Fol Ihe (ase whelrc the II1';I1 or ;Ive age
vahiae of fle terms il tIhe A ex)ression are ,sed, Figure fia shows fhe singlc-degnce-of-freedot
dhe, n cmeritai itllegrati-lMo cus iations IM Eq. (39) systetn sh(tced to . tralnsient foundalion v'elot-ity
itIe shown ill Fig. 61). l'e etilatiot of motion is
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+ 2aw + w2x = -0'8, a < I . = -0.318880 x. + 0.881534 u.

where 8 = Px
3Ik + /(02. Since a desk calculator -0.318880 , (41b')

is used to find the reslmnse x of the system, the where
mean value of the terms in the 8 expression is
used. For this case a < 1. so that the equations -

from Appendix B for- Case II apply. By replacing - 40.320
F/rm hv -08 in Eq. (B I), the numerical integra-
tion equations are + 0.000289 (-,,- + 8 X,, + 5 x. )3 .(41c')

X4.. = e-'" (cos ph + r sin ph) The straight line averaging method is used

for the first increment of the solution since x-,
+ U, eG sin ph does not exist. Table I shows the arrangement

r for solving the equations and presents the data
a for n = 0, 1, and 2. Although all numbers are

- & [! - e- (os ph + rsin ph)1 (4Ia) carried to six decimal places, the iteration of the
variable x was carried to four decimal places.

e- sinThis generally required four trials in each step.
r= - sin ph The results of the numerical method are plotted

in comparison with the response curve obtained

+ u, e-"(cos ph - sin ph) - & -sinph. from an analog computer at NRL as shown in
r Fig. 6c.

The values of the parameters are Example 2

m = 0. 10 Ib-sec'/in. c = 2.4 Ib-sec/in. Figure 7a shows a two-degree-of-freedom sys-
tem subjected to a transient foundation accelera-

k = 1440 lb/m. P = 720 lb/in.3 tion shown in Fig. 7b. There are two cubic harden-
ing springs in the system with the following

A time increment h = 0.X0028 sec is selected so force-displacement relationships:
that 0 = 360 wh/2sr = 19.25 degrees. Referring
to Fig. fib it is noted that twelve steps of this in- fie = ki, + ISxt, f , - k2X, + J92X|.

crement arrive at t = 0.0336 sec and that the thir-
teenth step requires an h' = 0.(X)14 sec to com-
plete the input of the system. The solution of The equations of motion are
the free vibrations from this point is based upon
h = 0.0028 we. ,+ 2aiwil, + w2xl = -W181 (42a)

Since the foundation velocity is the known in-
put, whik the 8 expression calls for the founda-
tion acceleration, the latter is approximated over i2 + 2aw2i2 + 64x, = -482 (42b)
each short increment by the pmrabolic average
method. That is, where

The paraboilic averaging method is used for the = k  k, k , k a  +
x term in the 8 expression. Upon substituting
the values of the parameters into FAs. (41) for M2__ + MS-) e3+C
h = 0.(28 sec, there results 2 = x2 + k, ! x2 M 2

z. =0.945311 x. + 0.318880 u. cvil _ _ Piz?

-0.0546898, (41a') r 1 2 Xa 2
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(b)) FoIunldationI input
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lution of a nonlinear two-degree-

In05 - of 'freedom system wuth viscous
x

U damping

0.02 004 004 IEt SC 006
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method and from an .Analog computer

1.5
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- RESULTS FROM NUMERICAL ME T"00,

;0.5
x

0

z 002 0.04 006 0.09
'a TIME t (SEC)

In0.5
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(d) Respormse is vis obtained from the numerical
I methodi mid from an analog computer
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The niumericail integration equations Imr Eqs. The hars abowe fihe variables in the 8 expres-
(42) are the samte as in Example I with the adcli- ' 431% 3 epteseat pdalXbolit av'erage %-tiles during
tional requiremetnt that the proper s11ibsripts he if tic eiuiet n to n 4- 1. '1 lie convergenice 4)1
used. The %,aluies of'the p~aramneters are i lie variabiles of Ilite iterat iont method was ciied

to 1 ut dec ittal p~lates. This generaly requtired

m, 0.401 Ili-sec'2Ijtt. inm 0. 10 lb-sec 1/ill. fite I ials iii each step). 'The nu~merical res11lts
are plo)1tted againist the resitonse curves obtainied

41 =8000( lW/in. k2 = 2500 lb/itt. Iroin anl aialog c olputer at NRI. .131(] are shown
iii Figs. 7( midc Mc.

13, 70100 lb/inl.3  
02 = 2000 11/ill.-

CONCLUSIONS
c- 12 Ib-) 5t it. c2 = 3 lb-sc/in.3

A tiuneric .l integration method has been pre-

A lttle inutement h =0.002 c is sel~ctedo soi seitted which is easils. understood and p~rovides

that 0, = 360 wuihI 2 7r 16.21 degives .titc 9, = at good sollutionl for the transient respo~nse of nlon-

360 wm.h 12ff = 18.12 dlegtees. '1'1w( parabolic av- linear Systems. Generally the smaller lte increment

eraging tnlethod is cased for thle variables in the( selected for Al. thle greater the accuracy obtained

8 eXpressions 6(incIdinig the in pill. Fig. 71)). 1' m in the resix )nse solutiont. Experience has shown

suibstit Ititig fte %;tie% iii the parameters ito t hat angular increments 0 = 360 whl1rf between

thle ntnileric al inltegratio n equlal ion, there results 15 and 30 degrees for single-degree-of'-f ree(Iom
s% stelis are generally acceptable while f'or two-

(xi .96060 xi . + .27884 u, legree-4 d-fieedom ntSystems O's sholid range he-

x1 I.. .960664 x)..+ 027084 ui) twecrn 101 and 20 dlegrees. The two examples in

this reptort used these ranges of %-allies for 0
-0.038934 ( 1 aaad the leader (alt see tile difference between the

analog) ( tputer resjrnnse and the nunmerical

(ut , -0.270884 x, +, 0.903601 (u4 , n I estids.
While thle examples used herein are amechanical

-~~1 0.784 ,mdels of1' St ructuries subjected to finandation
- 0.270884 1 itotj4a the numerical tmethod is ap~plicable for

%here. finiding the transient resxmnse of' a set of' non-
,tlt( ~lineal i14natit4 o )m4)ls differential eqjuationts for

F~ ), =0.85001 3 - 0.059293 ii2 - 0.31 2500 - oitlet tylles of physical systemns.
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APPENDIX A
MEAN VALUE DETERMINATION OF A FUNCTION

There are two common graphical metlhods fot
finding the mean value of the function shown F
il Fig. Al for the increment At = h. The first
method is to draw a line in an arbitrary direc-
tion by eye such that the sum of the enclosed areas c !
between the curve and the straight line is /ero.
The mean value of the function is the distance 0
from the abscissa axis to the straight line at the
middle of the interval. For example. line cd in
Fig. AI is such a line and the point fon the line
determines the mean value F.

The second method consists of drawing the line
ab which connects the end points of the curve I
segment. At the middle if the segment measure
the distance between the curve and the line, that
is, eg. Measure off 2/3 of this distance above (or h
below) point g to establish the mean value at point
f This second method is atcurate if the curve is Fig.AI - Determination of the mean value of a function F(t)

ani part of a quadratic parahola. for the in(rement h

APPENDIX B
NUMERICAL INTEGRATION EQUATIONS

FOR LINEARLY DAMPED SYSTEMS

Nunerical integration equations are presented The applied force is represented by the para-
for the differential equation bolic method, so that

+ 2aw +~ F (F = F, + S. + h:+ 2awj + wty =-(B1) h 2 h

For foundation motion Eq. (B i) becomes

where -ac < a < x, w > 0. The region of a is

broken into seven cases as follows: i + 2aw. + wax = -Y. (B2)

Case I: a =0 By means of similarity between Eqs. (BI) and
(B2), it is only necessary to change the follow-

Case I1: 0 < < I ing in the numerical integration equations for
applied forces to obtain those for foundation

(:as c Ill: a = I motion. Let

(ase IV: a > I yn=xn, vv=un, F,=-mix,

(as V: -1 < a < 0 F. . , S. Si-, S11-
k - i" k ' k W

Case VI: a -I
If the input is given by the fiondation velocity,

Case VII: a < -1. which is represented by the parabolic method,
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the derivialtivC oi gives tidt foUndatilon aCelera- CASE 11: 0 < a < I (Let r = VF ( 2)

tioll as
Input - Applied Force or

S = SA (1_ \ Foundation Acceleration

Yh = yhe as((cos rO + sill rO)

where r

+ V, e "I i
Sm i+.+- in r

Sn ,= in.,- 2 in + in ,. + 'le-a (s rO + 2 sin rO]

E qu a t i n s (B1 ) a n d (1 2 ) a re s ol)Iv d  f r  (v a( h o f + -. 2 a ( I -e - 0 (- o s rO )

the seven (ases. k

_,sin rO]-I( - 2a2) e-. !!-L-
CASE 1: 0 rO J

Input. Applied Force + 14_ [.Q 014a' 2a]

or Foundation Acceleration
( I - e-00 cos r9)

n- Yn.ton4)5+V. si +L"(I (o59) I[- 2a2 2a(3 -4al)]

+ . sin_ 0 + -S' , sil' 0 2(1 - ,,s 0 e9 sin r__9 I
k 01 2k[ 91 0J rJ

9Y. ir + V. f (co r9- sill r8)
Vol. I---- Si .+ I " r In"i r

+~l • -- - L sill 0 + -all (o r

+-. + 9 ( e Ins r- ae °0sin ro

+ S + 8o 0 2 0' 0r
+2k sl + S11 2 (4a + I)(] -e- cos re)

Input - Foundation Velocity - [2(0 - 2a2) a] r-00 sin r9

X., = x. X(4s9 + U. sin# --!! (Is- 0 8) Input - Foundatom Velocity

S1 I.I +co sin 9 xnl=xfe (osr8+ asin r9 +ue h
- sin re

2e sinr r

Sn (I r--# c r@- a r," )
S 2-X- 0 i + 2 ( + 2n 9 ) - 6 cmrr

- . ( s (3 sill 51)9 + [a 0 -2a')] rel sin r9
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-'sinrO+ ( CASE IV: a > I (Let q = Va2- 1)+,,t=--t , eael tos rO -- sil rtOCS aa

Input - Applied Force or
e_ sin rO_ S, I - e-of cos rO Foundation Acceleration

rO w 02

e-" sin rO] Y." = Y" e-aS (cosh qO + a- sinh qO)

+ v,, e
- O

q
CASE !!!: a = 1C A S E~ I I I : a =l - e - af c¢ o sh q O + -L t sin h q O )

Input - Applied Force or +( q

Foundation Acceleration + [I -a (1- - oshq)

y..a = y.(l + ) e + v.0 e
- T

+F L - (1 + 9) -01 - ( - 2.2),-,, sinh]
k. q8 I

k[I 2+e-0) 02 -,

+ - - A ( - e- ) - 02 (I - e- cosh - O)

k102(( + [I -2a' + 2a(3-4a')]

V.. = -y.9e-# + v.( ! - 9)e-f + L. ee-0 O

k ( " - S

+ _j ( - e)q !

+s-l - (I - e ) +e e + . I,--,sinh q

2k [-@ 92 0 ql ,,r

Input Foundation Velocity + V. e-1 (cosh qO - 2i-h qOq

X. =z.(I + 9)e- + u.e +o)

S. (I -e ' T q

. e)

S [+ 1 (I-eo h o O ae+ 2senhqO
j 1 2 0_0

+ (,+') e-] +2k- (I,i+ )( - e- 00C

u., 1 x.9eas.(9)e'' *[2( -2a)]
s __ +I-0 0-

1 , P' (+') .I °.h q
0 2 ( 0)"
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Input - Foundation Velocity CASE VI (continued)

X,, -e , h qO + - ' in qe) +-- 1 +e+ (l-e)

4 u,, e shi qi~ +O S11 1 r6. +2 ,.I1 0)eq

- S. (I +e 1"0 (! -- e)+ a- ! +i2)h q-

q q

S 1 / I I + ( o ..) ( I - e 0 0ion l s h  q O X( 9 )e + u )e e

1)+ Fe + - e

+I (I - 20 T kg)

12 0

q. + - + - e ) - , O-F.
1.a qO I

U.., -I. e I's shh Input - Foundation Velocity
q

CAS V:. II In ae + 0

S e "u (sioiot Ce - rl ahq .i, = (- e'+ + ue"
q8

(%hi q0-' " 2' " ' qO Ig [-- e-)o

CASE V: -1 < a < 0
Use. the" equtations lf~r C:ase1 Int!)l rep~lace" cr Iy un+, = -xxoe* + un( i + O9)eO e O

S11-, [I e+( I -)..
CASE VI: r 1 -I G 2

Input - Applied Force or
Foundation Acceleration

yin., )y(I - 9)e* + V.3 e" CASE VII: a < -I

+ [I - -Use the equations for Casw IV but replace a by
+ -a.
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